Chebyshev's Inequality

Concept

1. Chebyshev's inequality allows us to get an idea of probabilities of values lying near the mean even if we don't have a normal distribution. There are two forms:

$$P(|X - \mu| < k\sigma) = P(\mu - k\sigma < X < \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$
$$P(|X - \mu| \ge r) \le \frac{Var(X)}{r^2}.$$

The **Pareto** distribution is the PDF $f(x) = c/x^p$ for $x \ge 1$ and 0 otherwise. Then this is a PDF and c = p - 1 if and only if p > 1. The mean exists and $\mu = \frac{p-1}{p-2}$ if and only if p > 2. Finally the variance exists and $\sigma^2 = \frac{p-1}{p-3} - (\frac{p-1}{p-2})^2$ if and only if p > 3.

Example

2. Let $f(x) = \frac{5}{x^6}$ for $x \ge 1$ and 0 otherwise. What bound does Chebyshev's inequality give for the probability $P(X \ge 2.5)$? For what value of a can we say $P(X \ge a) \le 15\%$?

Problems

- 3. True False Chebyshev's inequality can tell us what the probability actually is.
- 4. True False For Chebyshev's inequality, the k must be an integer.
- 5. True False The Chebyshev's inequality also tells us $P(|X \mu| \ge k\sigma) \le \frac{1}{k^2}$.
- 6. True False Chebyshev's inequality can help us estimate $P(\mu \sigma \le X \le \mu + \sigma)$.
- 7. True False We can use Chebyshev's inequality to prove the Law of Large Numbers.
- 8. Let f(x) be (2/3)x from $1 \le x \le 2$ and 0 everywhere else. Give a bound using Chebyshev's for $P(10/9 \le X \le 2)$.
- 9. Let f(x) be the uniform distribution on $0 \le x \le 10$ and 0 everywhere else. Give a bound using Chebyshev's for $P(2 \le X \le 8)$. Calculate the actual probability. How do they compare?

- 10. Let $f(x) = e \cdot e^x$ for $x \leq -1$ and 0 otherwise. Give a bound using Chebyshev's for $P(-4 \leq X \leq 0)$. For what a can we say that $P(X \geq a) \geq 0.99$?
- 11. Let f(x) be $4/x^5$ for $x \ge 1$ and 0 everywhere else. Give a bound using Chebyshev's for $P(X \le 3)$.